
_ OTIC .. I~i ELE.C'I"E

DW

A LIFT-AND-PROJECT

CUTTING PLANE ALGORITHM

FOR MIXED 0-1 PROGRAMS

Egon Balas
Sebastidn Ceria

and

Girard Cornuijols

Carnegie Mellon University
PITTSBURGH, PENNSYLVANIA 15213

This document has bsen oppxoved
JoE public release and sale; its
di:tibution is unlimited.

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION
WILLIAM LARIMER MELLON, FOUNDER

92-03149

.8 2 06 127 O

Management Science Research Report No. #576

D

A LIFT-AND-PROJECT DTIC
CUTTING PLANE ALGORITHM APR28 19928 N

FOR MIXED 0-1 PROGRAMS U
Egon Balas

Sebastida Ceria
and

Girard Cornaijols

October 1991

this document has bien oapprov-edfor public release and sale; its
distribution is unhimited.

This research was supported in part by the National Science Foundation, Grant #DDM-
8901495 and the Office of Naval Research through Contract N00014-85-K-0198.

Management Science Research Group
Graduate School of Industrial Administration

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

We propose a cutting plane algorithm for mixed 0-1 programs based on a family of

polyhedra which strengthen the usual LP relaxation. We show how to generate a facet of

a polyhedron in this family which is most violated by the current fractional point. This

cut is found through the solution of a linear program that has about twice the size of

the usual LP relaxation. A lifting step is used to reduce the size of the LP's needed to

generate the cuts. An additional strengthening step suggested by Baas and Jeroslow is

then applied. We report our computational experience with a preliminary version of the

algorithm. This approach is related to the work of Balas on disjunctive programming, the

matrix cut relaxations of Lovisz and Schrijver and the hierarchy of relaxations of Sherali

and Adams.

Key Words: Cutting planes, projection, mixed 0-1 programming, disjunctive program-

ming.

Accesion For
NTIS CRA& 4
DTIC TAB

Unar)no'ivzed
Justification 1

BY...
Dist ibulion I

Availabiity Cocez
Avai31 -:1 ;o

Dist

Statement A per telecon
Lcdr Robert Powell ONR/Code 113D
Arlington, VA 22217-5000

NWW 4/27/92

1 Introduction

More than thirty years have elapsed since the emergence of cutting plane algorithms for

mixed integer programming, but branch and bound is still the prevalent way to handle such

problems. In the last 10-15 years there has been considerable progress in using combinatorial

cutting planes for certain classes of pure integer programming problems, such as the symmetric

traveling salesman problem, in combination with branch and bound (see, for instance [PR87]).

The success of this approach, known as branch and cut, can be largely attributed to the

fact that the combinatorial cutting planes used are often facets of the underlying integer

polyhedron. For a mixed integer program, or for that matter a general pure integer program,

facets for the integer polyhedron are not easy to obtain. For pure integer programs, one

way to generate deep cuts is to use facets of the knapsack problems obtained by considering

each constraint separately. This approach was applied successfully by Crowder, Johnson and

Padberg [CJP83] to pure 0-1 programs without special structure. A similar idea was used by

Van Roy and Wolsey [VW871 for mixed 0-1 programs.

Another way of strengthening the linear programming relaxation of an integer program is

to lift the problem into a higher dimensional space, where a more convenient formulation may

give a tighter relaxation. One then has a choice between working with this tighter relaxation

in the higher dimensional space, or projecting it back onto the original space. In this latter

case, the whole procedure can be viewed as a method for generating cutting planes in the

original space.

One such procedure was recently proposed by Lovisz and Schrijver [LS89] for 0-1 pro-

grams. The higher dimensional space they use is obtained by multiplying every inequality

by every 0-1 variable and its complement in turn, then linearizing the resulting system of

quadratic inequalities and finally projecting back the system onto the original space. The

lifting phase of this procedure involves a squaring of the number of variables and an even

steeper increase in the number of constraints, but iterating the lifting/projecting step a num-

ber of times equal to the number of original 0-1 variables yields the convex hull of feasible

0-1 points.

A similar lifting/projecting procedure, which obtains the integer hull in a non-iterative

I

fashion through simultaneous multiplication of the original constraint set by all the 0-1 vari-

ables and their complements followed by projection, had been proposed by Sherali and Adams

[SA88, SA89].

In this paper we propose a lifting/projecting procedure where the original constraint set is

multiplied by a single 0-1 variable and its complement before projecting back onto the original

space. The lifting phase of our procedure involves only a doubling rather than a squaring

of the number of variables and constraints, nevertheless iterating the lifting/projecting step

as many times as the original number of 0-1 variables yields- the convex hull of feasible 0-1

points, as in the Lovisz-Schrijver approach.

We then show that our iterated procedure is equivalent to the sequential convexification

procedure for facial disjunctive programs (of which mixed 0-1 programs are a special case),

introduced by Balas [B74b, B79] in the seventies. The new insight, which comes from re-

discovering a previously known structure from an entirely different perspective, leads us to

examine a class of finitely convergent cutting plane algorithms for mixed 0-1 programs based

on the iterative lifting/projecting procedure outlined above. The cutting planes generated by

the procedure are facets of the current projected polyhedron, and their derivation involves the

solution of a linear program of roughly twice the size of the original problem. The objective

function of this linear program is aimed at choosing among the members of the given family

of cuts a deepest one, i.e, one that cuts off the optimal vertex of the current relaxation by

more than any other member of the family.

The paper is organized as follows. Section 2 introduces the theory behind our approach.

Section 2.1 states our lifting/projecting procedure and gives its main properties. Section 2.2

compares this procedure with the Lovisz and Schrijver construction. Section 2.3 sketches

the Sherali-Adams results and relates them to ours. Section 2.4 shows the equivalence of our

lifting/projecting procedure to the sequential convexification procedure for facial disjunctive

sets. Finally, Section 2.5 applies our procedure to the stable set polytope to recover some of

the well-known facet inducing inequalities.

Section 3 discusses a class of cutting plane algorithms based on the material of Section

2. Section 3.1 outlines the approach and discusses some of the issues and options that arise.

Section 3.2 gives a finiteness proof for a specialized version of the algorithm. Section 3.3

2

shows how some cutting planes can be generated from the simplex tableau, and Section 3.4

discusses a lifting step used to reduce the size of the LP's needed to generate the cuts. Section

3.5 applies to our inequalities the strengthening procedure introducedby Balas and Jeroslow

for disjunctive cuts.

Finally, Section 4 describes our preliminary computational experience with some versions

of the algorithm discussed under Section 3.1. The preliminary computational experiments

that we carried out indicate that, for some classes of problems, a relatively low number of

iterations is needed to find the optimum or get close to it. -

2 Projection and Convexification

Define

K : {xEI":Ax>b,>_O, zj<_,j-1,...,p}

and

K° := {x E K:z1 E {O,1},j= 1,...,p}.

KO is a mixed integer set with n variables, p of which are 0, 1 constrained. K is the

standard linear relaxation. In this section we consider procedures that yield cony K' starting

from K.

2.1 A sequential convexification procedure

0. Select an index j E {1,...,p}.

1. Multiply Ax > b with 1 - zi and z to obtain the nonlinear system

(1-x 3)(Az-b) _ 0

x(Ax -b) > 0 (1)

2. Lintarize (1) by substituting y, for xlz,,i = 1,...,ni 0 j, and z for z. Call the

polyhedron defined by the resulting system Mj(K).

3

S. Project Mj(K) onto the z-space by eliminating yi, i = 1,...,n,i 6 j. Call the reslting

polyhedron Pj(K).

Note that, if the system defining K has m constraints and n variables, the system defining

Mj(K) has 2m constraints and 2n - 1 variables. It is clear that K 9 P(K) and that

Pj(K) 9 K. In fact, we have:

Theorem 2.1 P(K) = conv(K n f{z E R"' : j E {0,1}}).

Since any z that satisfies Ax band 0 :5 zj _ 1 dearly satisfies both (1- zj)(Axz-b) _0

and zi(Az - b) 0, the multiplications performed in Step 1 above are not responsible for

tightening the constraints of K. Further, replacing xixj with yi for all i 0 j in Step 2 above

cannot tighten those constraints either. Yet, unless the 0-1 constraint is redundant for variable

j, the projection P(K) of the set Mi(K) resulting from Step 2 is strictly contained in K.

The only operation that is "accountable" for this tightening is the replacement of the terms

xJ by zj. Indeed, while this substitution does not eliminate any points for which zi E {0, 1},

it does cut off points z with 0 < xj < 1.

For t > 2, define P i,(K) = Pi,(Pi,- ... (P(K)) ...

Theorem 2.2 For any t = 1,...,p,

P,....,t(') = conv(K nl {x E R : zj E {0,1},j 1,...t

Corollary 2.3 P1,...,p(K) = cony KO.

Proof of Theorem 2.1.

(i)P,(K) _ conv(K n {x : z, E {0, 1)}).

First assume K n f{z : zj = 0} = 0. Then zi - e 2! 0 is valid for K for some e > 0. This

implies that (1 - zj)(xi - ,) > 0 is satisfied by any x that satisfies (1). Replacing z; by zi,

it follows that zx >_ 1 is valid for Mj(K) and for P(K). This, together with Pj(K) _ K,

implies Pi(K) _ K n {z : Tj = 11 and hence (i).

4

Similarly, if K n { : zi = I) = 0, zi : 0 is valid for P(K), and again (i) follows.

Assume now that K fn z : zi = 0) # 0 and K n {z : z, = 1} # 0, and let az > be a

valid inequality for conv(K nf {z : j E {0, 1})). Since ax > 0 is valid for K n Ix : z, = 0),

there exists X > 0 such that ax + zj >_ P is valid for K. Furthermore, since ax > # is valid

for K n {z zj = 1) there exists some p 0 such that ax + p(l - zj) 2! 0 is valid for

K. Now since ax + X:, - / > 0 and ax + I(1 - zi) > P are valid for K, the inequalities

(1 - z:)(a- + Axi - /) - 0 and zj(az + p(l - zj) - /) > 0 are satified by any z that satisfies

(1). Adding these two inequalities yields ax + (A + p)(zi - az) - / - 0 and, after setting

_2 z , a - >0 . Hence az - 0 is valid for Mi(K) and for Pj(K).

(ii) conv(K n f z :zi E 10, 1}}) g_ Pj (K).

To prove this, let ax > P be a valid linear inequality for P(K). Then ax > 8 is dominated

by some inequality of the form

u(A-)(-) + v(AX -)Xj > 0 (2)

where u, v > 0 are row vectors such that all terms zi, i 9 j, cancel out, and where xj is to

be substituted everywhere for zq. But any such inequality becomes u(Az - b) >_ 0 if j = 0,

and v(Az - b) > 0 if : = 1. Thus (2) is valid for K n { : xj = 0) and for K n Ix : zj = 1);

i.e., (2) and hence ax >/3 is valid for conv(K n { : zj E {0, 1}1). M

Proof of Theorem 2.2. For t E {1,...,p}, let Ft := Ix : zi E {0,1} forj = 1,...,t). We

use induction on t. For t = 1, the result follows from Theorem 2.1. Suppose the result holds

for t =1,...,q - 1 and let t = q, 2 < q9< p. Then

Pi,...,q(K) = Pq(conv(K n F-l)) = conv(conv(K n F-1) n {z : xq E {0,1}})

where the first equation is implied by the induction hypothesis, while the second follows from

Theorem 2.1. The last expression can be rewritten as

con ((conv (K n F - .)n IX: Xq = 0}) U (con (K n FlF) n fZ : :q = 1))) (3)

Now let S C RI and let H := {x E R: ax = 8} be a hyperplane such that ax > / for

all z E S. We make the following

Claim . H n convS = conv(S n H).

Proof. x E H n convS if and only if az = P and z = -ET jAi for some finite T and

Vi E S, Ai 2 0, i E T, such that E2iET i = 1, and ayi >_ P, i E T. But ax = and

ay i > 0, i E T, imply ay= , i E T, hence z E H n convS4: x E conv(S n H). U

Applying this result to (3) and using the fact that for any S, T E W", conv(convS U

coav T) = conv(S U T) we obtain

l.....,(K) = conv(K n F,_I n { :, = 0}) U (K n F._I n Ix :T, = 11))

= conv(K n F._ n : {: Eq {0, I})

= conv(K n F.). U

Corollary 2.3 follows immediately from Theorem 2.2 upon substituting p for t. Another

consequence of Theorem 2.2 is the following.

Corollary 2.4 P(Pj(K)) = Pj(P(K)), for i,j E {1,.. .,p},i # j.

2.2 The Lovasz-Schrijver Construction

1. Multiply A: 2:3 with Z and 1 - xi,j = 1,...,p, to obtain the nonlinear system

(1-zI,)(AX-b) > 0

zj(A z-b) > 0

(1-z 2)(A-) > 0

: 2(A:-b) > 0 (4)

(1 -)(A:-b) > 0

ZP(A-b) - 0

2. Linearize (4) by substituting yii for zz,i = 1,...,n,j= 1,...,p,i j and x i for x,

= 1,...,p. Call the polyhedron defined from the resulting system M(K).

3. Project M(K) onto the z-space by eliminating yij,i = 1,.. .,n,j = 1,...,p,i j. Call

the resulting polyhedron N(K).

6

Note that, if the system defining K has m constraints and n variables, of which p are 0-1

constrained in K ° , the system defining M(K) has 2pm constraints and pn + n - p variables.

Lovisz and Schrijver have shown that N(K) has the following properties:

Theorem 2.5 N(K) g conv(K nf {z E t : zi E {0,1}}) , j = 1,...p.

Let N1(K) = N(K) and N'(K) = N(N'-(K)), for t ? 2.

Theorem 2.6 NP(K) = cony KO.

In other words, iterating the above procedure p times yields the integer hull.

Theorem 2.1 implies Theorem 2.5, since N(K) _ P,(K).

Corollary 2.3 implies Theorem 2.6. Again, this follows from N(K) C Pi(K),j = 1,...,p.

Note however, that the Lovsz and Schrijver relaxation N(K) is not only stronger than

P(K) for any j, but also stronger than nF= 1 P(K); the inclusion N(K) C_ flO=P,(K) can be

strict.

2.3 The Sherali - Adams Construction

Somewhat earlier than Lovisz and Schrijver, Sherali and Adams had proposed a similar

convexification procedure [SA88].

Let K and K' be defined as above, and let t E 11,... ,p}.

1. Multiply Ax > b with every product of the form [lj 1 Ilj [fjeJ(1 - zi)j, where J,

and J2 are disjoint subsets of {1,...,p} such that IJI U J21 = t. Call the resulting non-

linear system (NLI).

2. Linearize (NLt) by (i) substituting zj for z9; and (ii) substituting a variable w.j for

every product Il,[j xz, where J C {1,...,p}, and vjk for every product zk rl~.jij

where J C {1,...,p} and k E {p+ 1,...,n}. Call the polyhedron defined by the resulting

system Xt.

7

3. Project Xt onto the 2-space by eliminating all wj and vjk. Call the resulting polyhedron

Kt.

It is easy to see that C K _C ... CK, K. In addition, Sherali and Adams proved

the following:

Theorem 2.7 [SA88, SA89] Kp = convK ° .

Next we prove a result which shows that Theorem 2.7 also follows from Theorem 2.2.

Theorem 2.8 Fort = 1,...,p, Kt g Pl,....t(/) .

Proof. Let Aix _> bi denote the linear system describing Pi,....J(K), for j = 1,...,t. Let

az > 6 be one of the inequalities defining P,...t(K). Then ax >)6 can be obtained by

taking a nonnegative linear combination of the inequalities (1 - zt)(A t-lz - bt - i) 0 and

zt(At-xz - bt-) > 0, with multipliers that eliminate the nonlinear products xizt,i 0 t

and substituting z? by z,. By the same argument every inequality of the system At-1 Z -

bti > 0 can be obtained by taking a nonnegative linear combination of the inequalities

(1 - zxt_)(A t-'z - b -) _ 0 and zt.l(A t-2x - b 2) 0, with multipliers that eliminate all

products zizt-, i 9 t - 1 and setting x:t- = z,-.. By inductively repeating this argument

we can obtain ax > # in terms of the inequalities of (NLg), by first substituting zj by

i 1,...,t, and then eliminating the remaining nonlinear terms using as multipliers the

product of the multipliers used in each step of the induction. Therefore ax _> 8 is valid for

Kt and the result follows. 0

Now Theorem 2.7 follows from Corollary 2.3 and Theorem 2.8. It also follows from

Theorem 2.6 and a proposition in [LS89] that shows that Ki 9 N t(K).

2.4 The Connection with Disjunctive Programming

The results of Section 2.1 are closely related to results obtained earlier in the context of

disjunctive programming, i.e. optimization over unions of polyhedra. The first of these is the

following basic lifting theorem for unions of polyhedra:

8

Theorem 2.9 [B74b, B85] Let II := {z E R" : Aiz b>6, i E Q be a finite set of nonempty

polyhedra. Then conv(UiEQ1i) is the set of those z E R" for which there exist vectors

(y', 14), i E Q, such that

-iEQ = 0

A'y' -biyo, _ 0 (5)

iEQ74 A 1

Theorem 2.9 assumes Hi 4 0, i E Q. IfI k = 0 for some k E Q, the theorem is still valid

[B851 if the following regularity condition holds:

Ak: > 0 =* z = y for some i E Q\{Ik} such that 1I i 0 and A'y' > 0.

Next we show that Theorem 2.9, specialized to the case when IQI = 2 and

11 := K nf {z:j = 01,112 := Knfl {x: = 1)

yields Theorem 2.1. Indeed in this case (5) becomes

X -z -y = 0

Az-bzo> 0

zi = 0

AY -4 > 0 (6)

Yj -yo = 0

Zo +Io = 1

Zo,Yo > 0

It is easy to see that the above regularity condition is satisfied for (6), since the matrices

A' associated with z and y are the same, namely A.

On the other hand, P(K) is the projection onto the z-space of Mj(K), the polytope

whose defining system is obtained from (1) by setting yi := zixj,i = 1,...,n,yj := :j = X2.

The result of these operations is:

Ax- -AY+b i -: 0 (7)

9

If we now define y0 := xj,z := x - y, zo 1 - xi,, (7) can be rewritten as (6), where the

equation zi = 0 follows from yj = xi, zj =x - yi; and the equation yj = y follows from

Yj = xj = YO.

Since Theorem 2.1 asserts that conv(I 1 U 112) is the projection on the z-space of the

polytope defined by (6), it is a specialization of Theorem 2.9 to this case.

An alternative characterization of the convex hull of a union of polyhedra, also obtained

in the context of disjunctive programming, is contained in the following theorem, which will

play an important role in the cutting plane algorithm of Section 3. We state the result as it

applies to P(K) (= conv(111 U 11)).

Theorem 2.10 [B74b, B79]

Pi(K) = {x E R' : ax > P for all (0, 0) E Pj*(K)},

where P (K) is the set of those (a,#) E !,'+I for which there exist vectors u, v E R+,+P

and uo, vo E R satisfying:

a -uA -oe i = 0

a -vA -voej = 0

13 (8)

vb +vo 1

u,v > 0

where ei is the jth unit vector in R".

Further, if K is a full dimensional polyhedron and 11, 6 0 # 112, there is a 1-1 correspon-

dence between facets of P(K) and extreme points of Pf*(K)o, the polyhedron obtained from

the cone Pj*(K) by setting # = 1 or # = -1.

Next we turn to the sequential convexification theorem for facial disjunctive sets. If 11 is

a polyhedron containing the polyhedra Ili, i E Q, then the disjunctive set S := UieQIIi can

be written in conjunctive normal form as

S={zEH: V dkx>_ ,h= ,...,q), (9)
kEQh

10

where IQ1A = IJQ for all h, and each disjunction h contains exactly one inequality from the

system defining each 11i.

The disjunctive set S is called facial if each inequality dkx 4,k E Q1,h =- I q9

defines a face of I1.

Theorem 2.11 [B74b, B79] Let S be defined by (9). Let So:= H and for h = 1,..., q, let

Sh := conv(Sh-1 nl { Vdz 4k)).

If S is facial, then Sq = conv S.

When S is of the form

KO := {x E K : Zh 0 OVxh = 1, h I ... ,p},

it is clearly facial, and thus Theorem 2.11 specializes to Theorem 2.2.

While faciality is a sufficient condition for the theorem to hold, it is not necessary. A

necessary condition was given in [BTT89].

We will say that an inequality az > 03, valid for KO, has disjunctive rank r if r is the

smallest integer such that there exists a subset {i1 ,..., it} of .1,...,p}, such that atx > P is

valid for P,.... i,(K).

In the case of a pure 0-1 programming problem it is interesting to compare the disjunctive

rank of an inequality with its Chvital rank.

Let K = {x E 32 :-2x, + z2:50, 2z, + z252, 05 xj<_1,j = 1,2}, with p = 2.

It follows from Theorem 2.1 that the inequality z2 _ 0 has disjunctive rank 1, but it is

easy to verify that it has Chvi.tal rank 2.

Since the disjunctive rank, according to Theorem 2.2, never exceeds the number of vari-

ables, whereas no such upper bound is known for the Chvital rank, one might expect the

disjunctive rank to always be less than or equal to the Chvtal rank. This, however, is not

the case, as will be illustrated in the next section.

11

2.5 Application to the Stable Set Polytope

A stable set (independent set, vertex packing) in a graph G (V,E) is a subset S C V

such that no two vertices of S are adjacent. The stable set polytope is the convex hull of the

incidence vectors of stable sets in G:

S(G) := conv{z E {0, 1}" : xi + xi 5 1,V(i,j) E E}

The linear programming relaxation of S(G)

FS(G):= {z E R.: zi + xj 1,V(i,j) E E},

sometimes called the fractional stable set polytope, strictly contains S(G) whenever G is not

bipartite. Facets of S(G) include the odd hole and clique inequalities. For W C V, G\W

denotes the subgraph of G induced by V\W. For v E V, I(v) denotes the set of vertices

adjacent to v. Given G, deleting v and contracting v are defined as replacing G with G\{v}

and with G\({v} u 1(v)), respectively. Clearly these operations correspond to setting z,, = 0

and z = 1 in S(G).

If ax < b is a valid inequality for S(G) we say that the inequalities

E aii , b and E aizj :_ b- a,
jE v\{,, je v\({v}ur(v))

are obtained from ax < b by the deletion and contraction of v, respectively.

The following two properties are shown by Lovisz and Schrijver [LS89] to hold for the set

N(FS(G)). Here we show them to also hold for the larger sets P(FS(G)).

Lemma 2.12 If ax < b is a valid inequality for S(G) and there exists j E V such that the

inequalities obtained from ax !5 b by deletion of j and contraction of j are valid for FS(G\{j})

and FS(G\({j} U r(j))), respectively, then ax < b is valid for P(FS(G)).

Proof. Follows from the fact that (Theorem 2.1) Pi(FS(G)) = conv(FS(G) l {x : z, E

{0,1})

For the purpose of this discussion, an odd hole in G is defined as a chordless cycle of odd

length (i.e. triangles are included).

12

Theorem 2.13 Let C C V induce an odd hole in G. Then the odd hole inequality

: E, < ICI- I
iec 2iEC

is valid for P(FS(G)) for any j E C.

Proof. Let j E C. The inequalities obtained from the odd hole inequality by deleting and

contracting j are valid for FS(G\{j}) and FS(G\({j) U rI())) respectively, since the sub-

graphs of G induced by C\{j} and C\({j} U r(i))) are both bipartite. Hence from Lemma

2.12, the odd hole inequality is valid for P(FS(G)).

Thus the odd hole inequalities, which have Chvital rank 1, also have disjunctive rank 1.

Corollary 2.14 All odd hole inequalities are valid for the polytope

P(FS(G)) := P(FS(G)).
jEv

Proof. Follows from Theorem 2.13.

As mentioned in Section 2.2, the Lovisz and Schrijver relaxation N(K) can be stronger

than the intersection of the relaxations Pj(K). In our case, this would imply that the inclusion

N(FS(G)) _ P(FS(G)) is strict. This, however, is not the case; i.e. for the stable set

problem the two relaxations are the same. Lovisz and Schrijver (LS89] have characterized

N(FS(G)) as precisely the polytope defined by the inequalities defining FS(G) and the odd

hole inequalities.

Proposition 2.15 P(FS(G)) = N(FS(G)).

Proof. The inclusion N(FS(G)) g P(FS(G)) has already been discussed. The inclusion

P(FS(G)) C_ N(FS(G)) follows from the fact that P(FS(G)) satisfies all the odd hole in-

equalities. U

Another well known class of valid inequalities for the stable set polytope is that associated

with cliques, i.e., the sets of pairwise adjacent vertices.

13

The clique io-equality

jEK

where K g V is a clique of G, is known to induce a facet of S(G) if and only if the clique K

is (inclusion-) maximal. Clique inequalities are known to have Chvital rank rlog2lKfl.

Theorem 2.16 For any clique K, the clique inequality EieK zi :5 1 has disjunctive rank

IKI-2.

Proof. First we show by induction that the rank of EieK zi <_ 1 is at most IKI - 2. For

K = 3 the result follows from Lemma 2.13. Now suppose the result holds for every clique

K such that IKI :5 k and let K' be a clique of size k + 1. Let j E K' and K = K'\{j}. By

the inductive hypothesis, the inequality EiC-K zi :5 1, obtained from "iEK xi, :5 1 by deletion

of j, has rank at most k, i.e. there exists {il,... , i,} g V such that the inequality is valid

for Pul.... i,(FS(G)). Also, the inequality obtained from iCK' zi : 1 by contraction of j is

0 < 0 and also valid for P,1 i,(FS(G)). Hence, by Theorem 2.1, L.EK' zi _ 1 is valid for

A 1 ,1... 4. (FS(G)) and hence the disjunctive rank of iezK' Xi _5 1 is at most k + 1 = IK'I.

To prove that the disjunctive rank of "iEK Xi < 1 is exactly IKI - 2, suppose it is 8 <

fKJ-3. Then, there exists fi.,..., i,) C V such that the inequality is valid for Pi1 ,(FS(G)).

It then follows from Theorem 2.1 that, whether i, E K or i, % K, the inequality

is valid for Pi, i, (FS(G\{i.})). Applying this reasoning recursively to K\{i,}, K\{i, i-j I},

etc., the inequality

with IK\{i 1,.. .,Q1 i } 3 is valid for FS(G\{ii,..., i}), a contradiction.

Thus the disjunctive rank of cliques inequalities for cliques of size > 5, is larger than their

Chwital rank.

14

3 Some Cutting Plane Algorithms

3.1 The General Procedure

In this section we discuss cutting plane algorithms for mixed 0-1 programs based on the

sequential convexification procedure of Section 2.1. In particular, we address the problem

min{cx : x E K,xj E {0,1},j = I,...,p}, (MIP)

where, as before, K = {x E R : AZ > b.

We wish to use facets of P(K) as cutting planes. For this purpose we will generate

inequalities ax > P such that (a,#) is an extreme ray of the cone P7(K) of Theorem 2.10.

This can be done by solving a linear program of the form

max{aa + b# : (a,3) E P7(K) n S}, (10)

where (a, b) E R"+ ' is a vector that determines the direction of the cut, Pj(K) is the polyhe-

dral cone defined by (8), while S is a "normalization" set defined by one or more constraints

meant to truncate the cone P(K).

The general outline of such a procedure is as follows:

0. t:= 1.K1 K = {x E 3" : Ax > b}.

1. Find cx' := min{cx : x E Kt}.

If x. E {0, 1} for j = 1,..., p, stop.

2. For j E {1,...,p} such that 0 < xi < 1, find

atct + bt# j := maz{a to + b'/3 : (a, 0) E P;*(Kt) n S).

3. Define Kt+l by adding to the constraints of Kt the cuts oax > 13i generated in Step I

(and perhaps removing some cuts added earlier).

4. Set t := t + 1 and go to 1.

15

There are several options for choosing the set S and the vector (at , bt) in Step 2.

Normalization 1 : We say that (a, #) E P1j(K t) defines a deepest cut if it maximizes the

(Euclidean) distance between z t and the hyperplane ax = P.

Maximizing the distance between xt and ax - (is the same as maxii.izing the distance

between z t and its orthogonal projection on a: x /, which is i = '- Aa for some A > 0. Since

ax = P is the same as Aam = A# w.l.o.g. we can take A = 1. Thus i - z' = a. Furthermore,

0 - azt = li- a: t = aa. Thus a deepest cut is obtained for the vector (a',bt) = (-Zt,1)

and the set S := {(a,#) : 0 - az' = aal. However, the resulting problem (10) is not a

linear program, as the equation defining S is quadratic. Thus we are led to consider some

alternatives to this "optimal" normalization.

We continue to use (a,b) = (- t , 1) so that the objective in (10) remains to maximize

the amount by which the point xt violates the cut a: _ B. We consider the following options

for S:

Normalization 2 : One may simply require that / = 1 or /3 = -1. In many problems it is

easy to decide whether one should want a cut ax 3 with P > 0 or P < 0. One advantage

of this approach is that the linear program (10) to be solved in Step 2 can be reduced by

eliminating the variables a,,i - 1,...,n from the system (8) defining /j (K). Thus for / = 1

or 8 = -1 , (10) becomes

Min (uA + uoei)z'

subject to

UA -vA +(Uo -o)ej = 0
>(11

J +V /3

ts,t > 0

On the other hand, the drawback of this formulation is that the optimal solution sought

may not exist. Indeed, it is known [B74b, B79] that the linear program (11) has a minimum

if and only if Ax' E P(K) for some A > 0. For important classes of problems this condition

is always satisfied. But for others it is not, and the task of generating a strong cut using (11)

becomes cumbersome.

16

The next two normalizations are aimed at guaranteeing the existence of a finite optimum

in (10).

Normalization 3 : We require that ilafll _5 1, by defining S {(a,/3): -1 !5 a, 1,i -

Normalization 4 : We require that [lail 1 _ 1, by defining S {(a,#) : E!-l jail _5 1}.

The absolute value constraint used here can be linearized by introducing 2n new variables

at,a-, i = 1,..., n, writing

S :- {(, :a + -o;+a> 0; "(+ +)<)

and eliminating a.

3.2 Finite termination

While there are several finite algorithms for pure integer programming, finiteness is much

harder to achieve in the mixed integer case. Gomory, who proved that his cutting plane

algorithms for pure integer programming are finitely convergent, was able to prove finite

convergence of his mixed integer programming algorithm [G60] only for the case when the

objective function is itself integer constrained. However, this assumption cannot be made

without loss of generality; and if the assumption is removed, Gomory's algorithm is not finite,

as shown by White [W61] (see [S75]).

The first finite mixed integer programming cutting plane algorithm was developed by

Jeroslow [J80] in the context of facial disjunctive programming, of which (MIP) is a special

case. To guarantee finiteness, Jeroslow uses a game theoretic framework for choosing the

cuts to generate. His convergence proof is based on the sequential convexification theorem of

Section 2.4, and uses the fact that every cutting plane generated in the algorithm is a facet

of some member of a finite family of polyhedra.

In this section we give a finiteness proof for a particular version of our procedure. Although

our proof is simpler than that of Jeroslow, it uses the same basic idea.

The general procedure outlined in Section 3.1 need not be finitely convergent. To insure

finite convergence, additional details have to be specified. We start with some notation.

17

In a general iteration of the procedure of Section 3.1, the current polyhedron Kt is defined

by the inequalities of Az b together with a set of cuts. For j E { 1,...,p}, a cut that appears

in the definition of Kt is called a i-cut if it was generated as a cut for some P(.), i.e., from

the disjunction zj = 0 V zj = 1. Let Kt be the polyhedron defined by Ax > b and all i-cuts

for i = 1,...,j, with K0 = K. Note that with this notation Kp = K t and K. K. for all i,j

such that 0 < i < j < p.

Let P;(K)s := P(K) n 5, where S is the set defined in Normalization 3 or 4.

Specialized Cutting Plane Algorithm

0. t := I,K K = {x E R" : b}.

1. Find czt' := min{cx : z E KT1.

If z E 0, 1} for i = ,.. .- ,p, stop.

2. Let i E {1,...,p} be the largest index such that 0 < xz < 1. Generate a j-cut a&x > pi

by solving

mazxf3 - ax' :(a,#3) E P17(K>..I)s}.

3. Define K't+ by adding the j-cut oaz > pi to the constraints of K.

4. Set t := t + 1 and go to 1.

Theorem 3.1 The Specialized Cutting Plane Algorithm finds an optimal solution to (MIP)

in finitely many iterations.

Proof. We need to prove two claims:

(i) The inequality aiz > /3 generated in Step 2 cuts off x'.

To prove this, we show that z, an extreme point of K'(= Kp), is also an extreme point of

K. This is trivially true if j = p, so assume that j < p. Since z' E {0, 1}, it follows that

4t E Kp._s n {x E I": 4) C= Pp(K_1.) _ Kp and therefore xt is an extreme point of

KP_1 {z E R' : xp = z,}, hence also of Kt- 1 (since K.._1 n {z E p: =" z=,} is a face

18

of Kp_-). By induction, since A E {0,1} fork = p,p- 1,...,j+ I it follows that z is an

extreme point of K,*_., Kp*-2,..., KI.

Next we show that z' V P(Ki_1). Since P(Kit_1) 9 K*, if z' E P(Ki_1) then zx is an

extreme point of P(KIt. 1). But all extreme points of Pj(Kit_1) have a jth component equal

to 0 or 1, whereas 0 < z(< 1.

Since zx V P(Kj_1), the inequality az >f/ generated in Step 2 is violated by z'.

(ii) For j = 1,... ,p the number of j-cuts generated by the algorithm is finite.

We prove this by induction. The statement is certainly true for j = 1 as every 1-cut generated

corresponds to an extreme point of Pj'(KA)s = Pj (K)s, of which there are only finitely many,

and as shown in Claim 1, every 1-cut generated cuts off some z' that satisfies all 1-cuts

generated earlier.

Suppose now that the statement is true for all i = 1,...,j - 1 and let i = j. By the

induction hypothesis, the set Kj_-1 is redefined in Step 3 of the algorithm (by addition of

some i-cut for i E {1, ... ,j - 1}) only a finite number of times. Between any two such

redefinitions, only a finite number of j-cuts can be generated, since each j-cut corresponds to

an extreme point of Pj*(Kt_1)s, of which there are only finitely many, and each j-cut cuts off

some zt which satisfies all j-cuts generated earlier. Hence only a finite number of j-cuts are

generated during the entire algorithm, which completes the induction. U

3.3 Cuts from the basis inverse

Let z' be the current fractional solution in the tth iteration of the cutting plane procedure, i.e.

cz t = min{cz : z E Kt,K = {z E R" : Az bt). In general, for a cut ox > P in PFj(K*)

defined by (8), the variables ui and vi can be strictly positive even if the corresponding

constraint W= . bz is not satisfied as equality by zt. In the case where we impose

that the only ui, vi that are allowed to be strictly positive are those for which the slack

corresponding to the constraint I Wzi b is nonbasic, a cut can be obtained without

having to solve a linear program, as shown below:

Let Bt be the matrix obtained from ;t by keeping only the rows corresponding to con-

19

straints for which the associated slack variable is nonbasic. Let C { E Rn : Btz - dt)

be the polyhedron defined by those inequlities of At: > it corresponding to the rows of B'.

Then, by applying Theorem 2.10 to P(C) and eliminating the variables aj,i = 1,..., n, and

,0 from the corresponding system (8) we get:

(uB - B)dI* B (12)

U , V , 31, 32 ! 0

where , and 82 are the nonnegative slack variables corresponding to the inequalities ub >

and vb+vo 2 !3 in (8). Since the matrix Bt is invertible, given vof - ug, the vector z8 = uS-VB

is uniquely determined from the first n constraints of (12). Moreover, a basic solution to (12)

satisfies u B.vB = 0 for all i, which implies that uB and VB are uniquely defined from ZB

as its positive and negative parts respectively (u - (zB)+, vB = (zB)-). This leads us to

investigate the cuts that are obtained by taking as our normalization constraint the equality

voB - uff = 1. These cuts are uniquely defined from (12) except for the values of al and s2.

Whenever al = 82 = 0 we get the following simple formula for the cut ax /3:

vB = (B1-1)

0i (Bj'_) Bj, i n,...,n 6 j, (13)

- (Bj*-1)+B' Bf- 1d'-1

= (B-')+d'

where B1 denotes the j-th row of B' - and B'-' = (B -)+-(B -). It is important to

point out that the j - ih row of the matrix B' - 1 is readily available from the simplex tableau

defining the solution z1.

Furthermore, the cut-hyperplane ox - / goes through the points where the boundary

hyperplane zj = 0 or zi = 1 of the set 0 < z3 < 1 is intersected by the rays of the cone

with apex at zx defined by the inequalities in C. Therefore the cut obtained this way is the

intersection cut associated with the convex set 0 < zj _5 1. Intersection cuts were introduced

by Balas [B71], [B74a], see also Glover [G173].

20

We end this section with another normalization that has an interesting property. Let

't,At,bt, and z t be defined as in the cutting plane procedure of Section 3.1.

Normalization 5 : We require that vo - u= 1.

It can be shown that whenever the last two inequalities of (8) are required to hold with

equality, the unique cut obtained by imposing this normalization is the intersection cut (13).

3.4 Cut Lifting

In this section we show that cutting planes with essentially the same properties as those

derived by the procedure of Section 3.1 can be obtained from a smaller linear program than

the one over P (K t)s, by working in the subspace defined by the fractional components of

z, and then lifting the inequality into the original space. This is important not only because

it is a computationally cheaper way of getting essentially the same cut, but also because in

a branch and cut context it provides a way of generating cutting planes at one node of the

search tree and lifting them into cutting planes valid at every node.

Let us consider the LP needed to generate a cut az _ P with Normalization 2, given by
(11). Let F = fi E J1,....,p : 0 < x! < 1} U i E Ip + 1,. .. , nj : ! > 01. W.l.o.g. we can

assume that if i E {1,...,n}, i f F then z = 0, since for those i such, z = 1 the variable

zi can be complemented by changing the sign of Ai, the ith column of A, and replacing b by

Consider the problem derived from (11) by removing from A all the columns corresponding

to {1,. .. ,n)\F. Let Ak denote the kth column of A, and let AF' be the column obtained from

Ak by removing the components (all equal to 0) corresponding to the inequalities Zh _ 0, h €

F and -Zh 2! -1 for h E {1,...,p}\F. Then (11) can then be rewritten as:

21

MiiEkEF tk4 +

subject to

k -v 0 k EF\{j}
U=F -VAF+U- V o 0 (14)

, >

U,v > 0

where #= 1 or #= -1.

Note that some of the variables and constraints in (11) are not present in (14). The

constraints that are missing are:

uAk-, Ak=0, kVF

while the missing variables are u,,+i for i f F and t+ +i for i E {1,. .,p),i g F. Here

m + 1,...,m + n are tLe indices associated with the primal constraints zh 2! 0, h =n

and m + n + 1,...,m + n + p are those associated with the primal constraints -th 2! -1,

h = 1,...,p.

The following theorem shows how an optimal solution to (14) can be extended to an

optimal solution to (11).

Theorem 3.2 Let (uF,VF) be an optimal solution to (14). Extend (uF, VF) to a solution

(ii,V) of(11) by defining:

i = uF fori=l,...,m,

=~ u for =1,...,m,

SF -- UF)~k if VFjkF > UFAF{ (v'-t4.i th riji : for i 0 F,0 othaerwise

vm~ ~ 0 { - F A ' A ' vo the r w is e for i f F,

iM+,+i iVM+,.+, = 0 for i E f{l,...p}, i f F.

Then (i, V,) is a basic feasible optimal solution to (11).

22

Proof. By construction (ii, V) satisfies all the constraints of (11) missing from (14), while the

remaining constraints are not affected. Thus (i,) is feasible for (11).

To see that (il, V) is basic, note that (uF, vF) is a basic solution to (14), and (ii, V) con-

tains exactly one extra positive component for every constraint of (11) missing from (14).

Furthermore note that the missing constraints are affinely independent from each other and

from the constraints of (14), so their addition to (14) increases the rank of the latter exactly

by their number. Thus (ii,V) is basic for (11).

Now let zF be the optimal solution to the dual of (14) associated with (uF, VF). Extend

zF to a feasible solution to the dual of (11), by setting to 0 all components associated with

those constraints of (11) missing from (14). Then the reduced costs of (14) remain unchanged

in (11). As to the reduced costs of the variables of (11) missing from (14), the situation is as

follows:

For the variables i+,+ for i E .1...,p}, i V F, the reduced cost is

4- (since = 0)

where zF is the dual variable associated with the next to last constraint of (11). Since that

constraint is an inequality, zF 0.

For the variables U,,,+n+i for i E {1,... ,pi V F, the reduced cost is

where z is the dual variable associated with the last inequality of (11).

For the variables ii+i for i E {1,. . .,n),i . F, the reduced cost is

4t - (0) = 0 (since z = 0)

whereas that associated with the variables V+j for i E {1,..., n), i V F, the reduced cost is

0- (0) = 0.

Thus all the reduced costs are nonnegative and hence (ii, ii) is optimal for (11). 0

Theorem 3.2 does not carry over directly to Normalizations 3 and 4. However, it .n be

proved for the following variants of these normalizations.

23

Normalization 3': S = {(a,i) -1 5 a, 5 1, for i E F).

Normalization 4': S = {(a,0) : &EdF I.la - 1}.

3.5 Cut Strengthening

The cutting planes az > 8 in Pj*(K) for somc j E {1, ... ,p, can be strengthened by using

the integrality condition on variables other than xi, as shown by Balas and Jeroslow [BJ80].

Consider the system (8) of Section 2, defining Pj(K). If we separate the non-negativity

constraints z > 0 from the rest of the inequalitier in Az _> b, i.e. write the system without

x > 0 as Ax 2 b, x > 0, then (8) becomes

a-fA-oei > 0

a -iA -voej > 0
j(15)

;+o > 0

ii, v > 0

and the coefficients of the cut a > /3 can be written as

ak= max {Qkak,k =1,...,n,

j3 = rnin{ 1,/32}

where

S- fA&, a -",k, for k 1,...,p, k j;

= - = +VO

(with Al denoting the kth column of A) and

#I = i , #2 = Cb + Vo.

The cutting plane az P, with P $ 0, can be strengthened to -y 2! where 0 is defined

as above, while -j is given by:

24

7k = min -(c4 + uormkl), (a" - voLmkJ) for k = 1,...,p; (16)
fk 11k12. .7k = Max f - a102 for k= p+ 1,..., n;

with

Ink= ak 118'1- aHI3 (17)UO1#21 + Vo 1#11

For the validity of this strengthening see [BJ80, B791.

Note that if mk = 0 the coefficient 7k in the strengthened cut will be the same as in the

unstrengthened cut. It can be shown that this is the case for all components k such that

k = I when 31 - ,2, a frequently occurring case in practice. By complementing the variable

zk and then applying the strengthening procedure, we may get mk # 0. In our computational

experiments we followed this practice.

We also note that, while a linear transformation of the system Ax > b leaves K, Pi(K)

and its facets unchanged, it can change the effect of the strengthening procedure.

Suppose, for instance, that instead of applying the disjunction zi = 0 V z = 1 to the

system Ax > b, we first solve the linear program min{cz : Ax b to obtain for AX > b the

expression:

i= do + Y aik(-Xk) for i E 1 (18)
keJ

Xk 0 0, k E IUJ,

where I, J index the basic and nonbasic variables respectively, and then restate (18) as

- 1ikzk _ -di0, i El (19)
kEJ

Zk 0 0, k E J.

Suppose also that j E I; then the disjunction zi = 0 V zj = 1 becomes

, k-k > d,o V - E dikTk_ 1 - ao. (20)
kEJ kEJ

Now the cuts defined from (19), (20) will be expressed in terms of the variables zA, k E J;

and although these cuts are equivalent to the ones obtained from Ax > b, zj = 0 V z, = 1,

when it comes to the strengthening procedure, the outcome will in general be different in the

25

two cases. First of all, in one case the strengthening procedure can be applied to all coefficients

ak, k - 1,...,p, whereas in the other case only to the coefficients ak for k E {I,.. .,p} n J.

Second, the different numerical values may yield different strengthening parameters mk in the

two cases.

One reason to look at the family of strengthened cuts derived from (19), (20) is that the

Gomory cut for mixed integer programming [G60] is a member of this family. To see this,

it suffices to look at the general form of the above cut and assign some special values to the

multipliers used in its derivation. To do this, we have to restate the system (15) defining

P1'(K) in terms of the variables used in (19), (20):

Ok + EiEI Us~ik -UOajk > 0 forkEJ

at + EI? 4Viik +Vodjk 0 forkEJ

- Eei t!To0 +UOjo ? 3

-- EiEzlaio +vo(1--djo) ? 3

As before, we can write the cut as ox > 3, with ak = max {a,a') and 0 = min{ 31, 02},

where

a4 = -j I + tLoajk, Cl2= - EZieI Vildik - Voik, k E Jk kE

31 -~ i uio + ujo, /32 = - iEI v,15, + vo(1 - &so).

The strengthened cut then becomes "y _ z where -yk is defined by (16), (17).

Theorem 3.3 The mized integer Gomory cut [G60] is 7yz > with the choice of multipliers:

u! = 0, Vl= 0, jE1,

uO = 1/ijO, V0 = 1/(1- jO).

Proof. Using the multipliers defined in the theorem we obtain:

a4 =fIjk/GjO, akf= -ak/(l - ajo), k E J

26

and 1 = = 1. Substituting these values into (16) and (17) yields mk = -djk and
min _+_ r-ajo -a - kJ fork=1,...,p

"'('mi (k+61 1 a0 ,

max 'k ---f0 for k = p+ 1,...,n
Iado, (1 -adjo)

which is the mixed integer cut of [G60].

4 Computational Experience

Preliminary versions of the cutting plane procedure discussed in Section 3.1, with Normaliza-

tions 2, 3, and 4, were tested on several classes of problems. At every iteration, Step 2 was

applied to every j E {1,... ,p) such that 0 < xl < 1; i.e., a cut was generated for every 0-1

variable that took a fractional value in the optimal solution to the linear program solved in

Step 1. The cuts were generated in the subspace defined by the fractional variables and then

lifted with the procedure of Section 3.4 into the full space. The strengthening procedure of

Section 3.5 was then applied to every cut generated. The strengthened cuts were considered

in the order of the amount by which they were violated by the current solution (most vio-

lated first), and a cut was added to the constraint set if the cosine of the angle between its

normal vector and that of all previously added cuts differed by at most 0 < 1, where 0 is a

parameter chosen by the user (Here we took 0 = 0.999). Similarly, the remaining cuts were

considered one at a time starting with the most violated one. Each cut was compared with

all previously added cuts for this iteration, using the parameter 0 to decide whether to add

it to the formulation. The experiments were run for a maximum of 30 iterations, and if the

objective function failed to improve significantly over several consecutive iterations, the run

was stopped earlier.

The linear programs encountered during the procedure were solved using the CPLEX

library. For the purpose of benchmarking and comparison, the test problems were also solved

with a branch and bound code (LINDO for most of the problems, Carpaneto and Toth's

[CT80] for the TSP's), as well as with a procedure using Gomory's cutting planes. For better

comparability, the Gomory cuts were used in the framework of our procedure; i.e. in Step

2 of our procedure, instead of generating one of our cuts for each j E {1,... ,p) such that

27

0 < x < 1, a mixed integer Gomory cut was generated from each row of the simplex tableau

corresponding to a (basic) variable zi such that 0 < 4 < 1. As with our procedure, we used

the parameter 0 to decide which cuts to add to the formulation. The-tests were run on a SUN

Sparcstation 330.

We considered four different classes of test problems. The first one is a set of unstructured

0-1 programs where Normalization 2 does not apply. The set is used to compare Normal-

izations 3 and 4 with Gomory cuts. The second class is a set of randomly generated vertex

packing problems where we compare Normalization 2 with Gomory cuts. The third class are

fixed-charge network problems formulated as mixed 0-1 programs. The last class consists of

two real world asymmetric TSP's where our algorithm is compared with a problem specific

branch and bound algorithm.

The first class of test problems consists of a set of pure 0-1 programs with fairly large

integrality gaps (i.e., differences between the value of the LP and IP optima). The BM

problems are tightly constrained general 0-1 programs with positive and negative coefficients,

randomly generated by Bouvier and Messoumian IBM65]. The LSB and LSC problems have

a real world origin and are taken from Lemke and Spielberg [LSp67]. The PE problems are

capital budgeting (multiple knapsack) models, with all positive coefficients, originating with

Peterson (PE67]. All of these problems are also described in [BMa8O]. The CJP problems are

from Crowder, Johnson and Padberg [CJP80] and have a real world origin. Table 1 describes

the problems by giving the number of their variables and constraints, the value of the LP

optimum and the integer optimum, and the number of search tree nodes it took LINDO's

branch and bound code to solve them.

28

Problem Number of Number of Value of Value of Branch & bound

name constraints variables LP optimum IP optimum tree nodes

BM13 15 15 14.96 26 26

BM14 15 15 1.50 2 2

BM19 25 20 31.05 47 16

BM20 27 20 33.96 47 14

BM22 20 28 19.31 33 224

BM24 20 28 25.78 38 242

LSB 28 35 521.05 550 42

LSC 12 44 56.61 73 934

PE4 10 20 -6155.33 -6120 76

PE5 10 28 -12462.10 -12400 98

PE6 5 39 -10672.34 -10618 84

PE7 5 50 -16612.82 -16537 476

CJP33 15 33 2520.57 3089 7086

CJP40 23 40 61796.54 62027 104

CJP201 133 201 6875.00 7615 1730

CJP282 241 282 176867.50 258411 10252

Table 1

Table 2 shows the difference between running our algorithm with and without cut strength-

ening.

Normalization 4

Strengthening No Strengthening

Problem Cuts Iterations % Gap Cuts Iterations % Gap

Name closed closed

LSB 150 14 100 261 30 91

LSC 51 7 100 317 30 84

Table 2

29

Table 3 compares two versions of our algorithm with a version using Gomory cuts. Table 4

shows our results on the PE and CJP problems.

Normalization 3 Normalization 4 Gomory cuts

Problem Cuts Iterations % Gap Cuts Iterations % Gap Cuts Iterations % Gap

Name dosed dosed closed

BM13 370 30 100 28 4 100 110 30 42

BM14 2 1 100 2 1 100 2 1 100

BM19 121 13 100 42" 4 100 112 30 79

BM20 132 15 100 23 4 100 115 30 79

BM22 405 30 51 446 30 55 93 30 32

BM24 514 30 53 536 30 53 103 30 32

LSB 461 30 97 150 14 100 65 30 65

LSC 370 30 100 51 7 100 35 7 100

Table 3

Normalization 4 Gomory cuts

Problem Cuts Iterations % Gap Cuts Iterations % Gap

Name closed closed

PE4 128 24 100 46 30 94

PE5 148 30 92 40 30 67

PE6 276 30 79 40 30 35

PE7 302 30 86 46 30 24

CJP33 558 30 77 168 30 72

CJP40 19 5 100 12 4 100

CJP201 1024 15 73 365 30 66

CJP282 521 15 96 350 30 22

Table 4

As it can be seen from Tables 3 and 4, the procedure with Normalization 4 found optimal

solutions to 8 of the 16 problems. Normalization 4 seems consistenly better than 3. As

mentioned earlier, we ran the procedure for at most 30 iterations in each case. Although

30

the tables do not reflect this, most of the gap reduction tends to happen during the first

few iterations. In a few instances, like CJP201 and CJP282, after 15 iterations progress had

slowed down to the extent that prompted the termination of the run.

Figure 1 contains detailed information for the solution of the problem BM20, iteration

per iteration.

The next class of problems consists of randomly generated vertex packing (maximum

stable set) problems. We present the solution of one problem on a graph with 30 vertices

and 30% edge density and three problems on graphs with 100 vertices and densities 5, 10 and

15%. Since all the cuts ax > 3 for this problem have a < 0 and P < 0, Normalization 2 was

used (with 6 = -1). Table 5 contains the problem data; the last column gives the number

of search tree nodes generated by LINDO's branch code. Table 6 contains the results of the

runs. For the 30-vertex problem we started with the edge formulation FS(G) as described

in Section 2.5. The initial LP solution was all fractional (x i = 1/2, for j = 1,. . ., 30). The

problem was solved in 10 iterations after adding 242 cuts. It is interesting to note that the

cutting planes generated in iteration 1, 2 and 3 were almost exclusively clique inequalities.

The striking point is that the cuts do not deteriorate as quickly as with other general cutting

plane algorithms. For example, in iteration 4, after 90 cuts had already been added to the

problem, the cuts that were generated included clique inequalities, odd hole inequalities and

lifted odd-hole inequalities. Even after iteration 4, the cutting planes generated had small

integer left-hand-side coefficients (after appropiate scaling of the right-hand-side coefficient).

For the 100-vertex problems, we started from a formulation in which the rows of the constraint

matrix represent a clique cover of all the edges. Each clique in the cover is obtained in a greedy

fashion by starting with a vertex of largest degree and expanding the clique with a neighbor

of largest degree until the clique is maximal. The cutting plane algorithm was able to solve

problem VP5 in 6 iterations (this problem took 4000 nodes when solved by LINDO's branch

and bound code), but it ran into difficulties with problem VP15 after closing 2/3 of the

integrality gap.

31

Cutting Plane Comparison - Problem BM20

47

451

43

S41-

> 39-
e -Normalization 3

37 -- ENormalization 4

36 --- Gornory cuts

0 5 10 15 20 25 30

Iteration

Figure 1

32

Problem Number of Number of Value of Value of Branch & bound

name constraints variables LP optimum IP optimum tree nodes

VP30 168 30 15.00 7 62

VP5 211 100 45.25 42 4000

VP1O 356 100 38.00 31 1024

VP15 440 100 33.86 25 2670

Table 5

Normalization 2 Gomory Cuts

Problem Cuts Iterations % Gap Cuts Iterations % Gap

Name closed closed

VP30 242 10 100 466 30 62

VP5 398 6 100 1015 30 66

VP1O 1129 13 91 1239 25 17

VP15 619 7 67 773 30 6

Table 6

The next class of problems we considered are fixed-charge network flow problems of the

form:

Min E, cizij, + E hijyi

subject to

j yU - -j yii = bi foralli

Yii _ uijZij for all arcs (i,j)

y >_ 0, j E {0,l} for all arcs (i,j)

We randomly generated the problems as follows. The first three problems are fixed-charge

capacitated transportatirn problems, i.e. fixed-charge network flow problems on a bipartite

graph. The next thi are fixed-charge problems on general networks. The arcs in the

network are randomly generated to match a specified density of the graph. For the first class

we generated three problems, CTR1, CTR2, and CTR3, with each of the two node sets in

the bipartite graph of sizes 10, 15, and 20, and densities 80%, 50% and 35%, respectively.

33

For the second class we generated three problems, FXC1, FXC2, and FXC3, on networks

with 10, 15, and 20 nodes, and the densities of 80%, 50% and 35 %, respectively. For both

classes, the fixed cost cij of opening an arc (ij) was randomly generated as an integer in the

range [0,20], the variable cost hii of using an arc as a real number in the range [0,2], and the

capacity uij of an arc as an integer in the range [1,20]. The demands and supplies bi where

randomly generated as integers in the range [-20, 20] and so that they satisfy F bi = 0.

Table 7 contains the description of these problems, including the number of constraints, the

number of 0-1 and continuous variables and the number of nodes that it took LINDO's branch

and bound to solve them. Table 8 contains the results with our cutting plane procedure.

Problem Constraints Integer Continuous Value of Value of B & B

name variables variables LP optimum IP optimum tree nodes

CTN1 103 83 83 128.58 183.34 180800

CTN2 150 120 120 169.79 239.21 1060254'

CTN3 182 142 142 313.80 432.28 4653821

FXC1 92 82 82 46.10 62.62 740

FXC2 123 108 108 116.19 148.91 1352

FXC3 161 141 141 152.01 197.98 773096

Table 7

1Number of nodes at which run was stopped without finding an optimal solution.

34

Normalization 4

Problem Cuts Iterations % Gap

Name closed

CTNI 434 15 94

CTN2 511 15 99

CTN3 582 15 95

FXC1 215 15 98

FXC2 388 15 95

FXC3 451 15 90

Table 8

We note that although the problems in this set are very difficult for a general branch and

bound algorithm, our procedure manages to close most of the integrality gap, as illustrated

by the data in Table 8. LINDO's branch and bound code was not able to solve problems

CTN2 and CTN3 to optimality when using the standard linear programming relaxation for

bounding. In order to solve both problems we applied branch and bound to the strengthened

linear program resulting after 8 iterations of our algorithm. In Table 9 we show for problem

CTN2, the benefits of strengthening the formulation before applying branch and bound. The

results are given for a number of iterations of our strengthening procedure ranging from 0

to 11. We report the total number of cuts generated by our algorithm, the CPU time (in

minutes) taken to generate these cuts, the number of nodes in the branch and bound tree

needed by LINDO to solve the problem, and the total computing time taken (in minutes)

including cut generation.

35

Iteration Cuts CPU B & B Total CPU

number time tree nodes time

0 0 0.00 >1000000 >2000

1 27 0.38 >600000 >2000

2 47 0.63 360012 1640.17

3 76 1.78 42120 335.28

4 110 3.87 32758 391.78

5 150 10.32 11498 224.25

6 185 15.57 1486 86.57

7 222 21.52 3522 215.52

8 274 50.09 2548 288.32

9 322 76.64 694 167.10

10 348 81.93 622 214.78

11 382 94.58 >500 >2000

Table 9

The last class of test problems consists of two difficult real world asymmetric traveling

salesman problems. The two problems that we ran have 17 and 43 nodes (cities), respectively.

They are samples of scheduling problems that arise regularly at ch -!mical plants of the Dupont

Company. These problems proved to be hard to solve by other existing methods. In particular,

the branch and bound code of Carpaneto and Toth [CP80], one of the most efficients codes

for this problem, took more than 110,000 nodes in the branch and bound tree to solve the

problem on 17 cities. For the problem on 43 cities, it could not find a tour after running

for 25.2 CPU hours, exceeding the memory limitations and enumerating more than 580,000

nodes in the branch and bound tree.

We ran our algorithm on these problems with a change in Step 1. Instead of the standard

linear programming relaxation, the algorithm starts by solving the assignment problem. If the

LP solution is a tour, the algorithm stops. If the LP solution is integer (i.e. an assignment)

but not a tour, the algorithm identifies the subtours and adds to the linear program the

corresponding subtour elimination inequalities and repeats 3tep 1. If the solution to the

current linear program is fractional, Step 2 of the algorithm is applied, i.e. a family of cutting

36

planes is generated.

For the 17 city problem our algorithm needed 10 iterations to solve the problem to opti-

mality, four of them corresponding to the generation of subtour elimination constraints. A

total of 151 cuts were added during the procedure.

In the case of the 43 city problem, in view of the large number of edges, we had to use cost

matrix sparsification techniques. To get an initial sparse cost matrix we generated several

"good" tours heuristically and took the union of their arc sets as the only arcs of our graph.

We then applied to this sparse problem our cutting plane procedure in its modified form

described above. When an optimal tour was obtained for the sparse problem, the reduced

costs of the missing arcs were checked, and a subset o1 the arcs with Degative reduced costs

was added to the problem. The procedure was then repeated.

The best earlier solution to this problem, of value 5621, was found by Repetto [R91) using

a collection of heuristics. Our procedure was able to find, after the second set of edges was

chosen, and 20% of the arcs were present, a solution of value 5620. After several additional

iterations there were still missing arcs with negative reduced costs, and the procedure was

stopped as computationally too expensive.

A second approach was then tried. The linear programming relaxation was solved with

the fully dense cost matrix, with only a subset of the subtour elimination constraints. The

lower bound LB obtained this way was then used in conjunction with the upper bound

UB = 5620 to fix at 0 all variables whose reduced cost exceeded UB - LB. Cutting planes

were then generated, which raised the value of LB to 5616. At this point, with an integrality

gap of 5620 - 5616 = 4, the problem containing only those constraints tight at the last linear

programming optimum, was fed to LINDO's branch and bound code. This linear program had

a total of 172 constraints, 86 of them corresponding to assignment constraints, 57 to subtour

elimination constraints and 29 to cuts generated with the cutting plane algorithm. After

enumerating 374 nodes in the branch and bound tree the code was able to prove optimality

of the solution with value 5620 and the problem was solved.

These computational experiments, although preliminary, suggest several conclusions. First,

like with other cutting plane algorithms, the effect of the cutting !lanes on the objective

37

function value, and hence on the integrality gap, is more significant at the beginning and less

significant as more cuts are generated. This is partly due to the fact that as the number

of cuts increases, their direction tends to get closer to that of the objective function. This

points to the need of embedding the procedure into an enumerative framework, so that when-

ever the cuts become "shallow", branching can be performed to move away from the current

LP optimum. Nevertheless, it is a remarkable feature of our procedure, and the family of

cutting planes it generates, that no numerical problems were encountered (with these cuts)

throughout the experiment.

5 Bibliography

[B71] E. Balas, Intersection cuts - A new type of cutting planes for integer programming,

Operations Research, 19, (1971), 19-39.

[B74a] E. Balas, Intersection cuts for disjunctive constraints, MSRR No. 330, Carnegie Mellon

University, February 1974.

[B74b] E. Balas, Disjunctive Programming: Properties of the convex hull of feasible points,

MSRR No. 348, Carnegie-Mellon University, (July 1974).

[B79] E. Balas, Disjunctive Programming, Annals of Discrete Mathematics, 5, (1979), 3-51.

[B851 E. Balas, Disjunctive Programming and a Hierarchy of relaxations for discrete optimiza-

tion problems, SIAM Journal on Algebraic and Discrete Methods, Vol. 6, (1985), 466-486.

[BJ80] E. Balas and R. Jeroslow, Strengthening cuts for mixed integer programs, Europen

Journal of Operations Research 4, No. 4, (1980).

[BMa80] E. Balas and C. Martin, Pivot and Complement-A heuristic for 0-1 programming,

Managment Science, Vol. 26, No. 1, (1980), 86-96.

[BTT89] E. Balas, J. Tama and J. Tind, Sequential convexification in reverse convex and

disjunctive programming, Mathematical Programming, No. 44, (1989), 337-350.

[BM65] B. Bouvier and G. Messournian, Programmes Lineaires en variables bivalentes-Algo-

rithme de Balas, Universiti de Grinoble, France, (1965).

38

[CT80] C. Carpanetto and P. Toth, Branching and bounding criteria for the asymmetric

traveling salesman problem, Managment Science, Vol. 26, No. 7, (1980).

[G173] F. Glover, Convexity cuts and cut search, Operations Research, No. 21, (1973),123-134.

[G601 R. Gomory, An algorithm for the mixed integer problem, RM-2597, The Rand Corpo-

ration, (1960).

[J80] R. Jeroslow, A cutting plane game for facial disjunctive programs, SIAM J. Control and

Optimization, Vol. 18, No. 3, (1980), 264-280.

[LS89] L. Lovisz and A. Schrijver, Cones of matrices and set functions, and 0-1 optimization,

Report BS-R8925, Centrum voor Wiskunde en Informatica, (1989).

(LSp67] C. Lemke and K. Spielberg, A capital budgeting heuristic algorithm using exchange

operations, AIEE Transactions, Vol. 6, (1974), 143-150.

[PE67] C. Petersen, Computational experience with variants of the Balas algorithm applied

to the selection of R&D projects, Management Science, Vol. 13, (1967), 736-750.

[PR87] M. Padberg and G. Rinaldi, Optimization of a 537-city TSP by Branch and Cut, OR

Letters, 6, 1-8.

[1191] B. Repetto, personal communication.

[Sa75] H. Salldn, Integer Programming, Addison Wesley, (1975).

[SA88] H. Sherali and W. Adams, A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems, Virginia Tech, Technical

Report, (1988).

[SA89] H. Sherali and W. Adams, A hierarchy of relaxations and convex hull representations

for mixed-integer zero-one programming problems, Virginia Tech, Technical Report, (1989).

[VW87] T. Van Roy and L. Wolsey, Solving mixed integer programming problems using

automatic reformulation, Operations Research, Vol. 35, No. 1, (1987), 45-47.

[W61] W. White, On Gomory's mixed integer algorithm, Senior Thesis, Department of Math-

ematics, Princeton University, (1961).

39

£.--27&O C. : , TA 1 T'x- --.-:'.

I MSRR "576

4. 71%. (ana 4"istleJ) S. TYPE~ OP REPORT & E* C Z.EZ

A LIFT-AND-PROJECT CUTTI':G PLANE ALCORITHY FOP, Technical Re ort--Oc: 1991

* MIXED 0-1 PROGRAMS 6. ;0muRoM ORG. VREPC-o ,u* d

~~~6 AC'Z* b N7ACI 301 GAAo P4iumOVI*,

Egon Balas N00014-85-K-0198
i Sebastian Ceria

Gerard Cornuejols

* - [p tOq-I'ING ORGANIZATION NAME AND A0'% 31 10. P;t lA4 M ;k .JaZNT, ' A..< -
Graduate School of Industrial Administration AREA A WCRK UNIT Nm.BER

Carnegie Mellon University 2

Pittsburgh, PA 15213

, - , - iCZ A ANO A.ORESS 2 '0 7
Personnel and Training Research Programs [ October 1991

Office of Naval Research (Code 434) 13. NM,=-,oF f PAE,
Arlington, VA 22217 39

1! A ~I TORING *.4*qCY N~hL A AOJAES5(j JJ J10F1 fro Cont,,IIJnd 011840) It. 9SICJNITY C..SS. (olt@1 -. ;

SCALiOULe

1 16 Z~t5?QI8II'!O STATEI4CNT '*I tptie Report)

'7. 0iSTJR,dUT:QN STA14.dfNT (jl the 0e49rati eited in J*91 . I 41,11tweli t r eo m )

5 8. ,UP0WL£MTAAY NOTES

III. KEY WOROS /.Mftei , eetee eta. Is I egeee7R r m fMet elW .r &Y ftlo O u w)

Cutting planes
Projection
Mixed 0-1 programming
Disiunctive programming

.20. A,@:'qR~r7 (C, u.1010W OR f*O-* 4160 It flS@**W end 1410tlif(7 "T h1@4A ~ffj
We propose a cutting plane algorithm for mixed 0-1 prodtrams based on a family of
polyhedra which strengthen the usual LP relaxation. W.e show how to generate a
facet of a polyhedron in this family which is most violated by the current frac-
tional point. This cut is found through the solution of a linear provram that has-
about twice the size of the usual LP relaxation. A lifting step is used to reduce

i the size of the LP's needed to generate the cuts. An additional strengthened sten
gsugested by Balas and Jeroslow is then applied. Wle renort our computational exner-

ience with a preliminary version of the alzorithm. This anoroach is related to

00 .473 10.,O P I S is OlO I

S4IIIY C .ASMPICAYION OF ,XIS P&49 ie' m JI I4.



the work of Balas on disjunctive nro~ramnin2, 
the matrix cut relaxatiOn l Lc,asZ an,

Schrijver and the hierarchy of relaxations 
of Sherali and Adams.

4


